Comparison of Trunk and Hip Strength and Flexibility between Pilots with and without a Self-Reported History of Low Back Pain

Takashi Nagai¹, John P. Abt¹, Timothy C. Sell¹, Karen A. Keenan¹, Brian W. Smalley², Michael D. Wirt³, Scott M. Lephart¹ ¹Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA; ²US Army School of Aviation Medicine, US Army Aviation Center of Excellence, Fort Rucker, AL; ³Blanchfield Army Community Hospital, 101st Airborne Division (Air Assault), Fort Campbell, KY

INTRODUCTION

- Low back pain (LBP) is one of the most common musculoskeletal issues facing military personnel, with a high prevalence reported in helicopter pilots
- Although several risk factors (age, history of LBP, total flight-hours, total night-vision goggle flight-hours) have been previously identified, modifiable musculoskeletal characteristics have not been investigated in this population

PURPOSE

• The purpose of the study was to compare trunk and hip muscular strength and range-of-motion (ROM) in pilots with and without a selfreported history of LBP

SUBJECTS

SUBJECTS

- A total of 31 pilots with LBP history (29 males/2 females) were matched on gender, age (± 5yrs), and total flight-hour (± 500hrs)
- Demographics and flight characteristics (flight experience, total flighthour, total night-vision goggle (NVG) flight-hour, and 12-month flighthour) are shown below

	LBP	Non-LBP
Age (years)	31.5 ± 5.9	31.4 ± 5.5
Height (cm)	177.1 ± 6.3	176.9 ± 8.8
Mass (kg)	84.4 ± 11.3	82.9 ± 14.6
Flight Experience (years)	6.5 ± 5.7	5.9 ± 4.4
Total Flight-Hour (hours)	1292.6 ± 1317.5	1291.8 ± 1312.3
Total NVG Fight-Hour (hours)	270.3 ± 345.6	290.8 ± 314.9
12-month Flight-Hour (hours)	184.0 ± 127.0	236.5 ± 187.1

NMRL Website Poster

EQUIPMENT

- The Biodex System 3 PRO dynamometer (Biodex, Shirley, NY) was used for trunk and hip strength testing
- A digital inclinometer (The Saunders Group, Chaska, MN) was used for passive hip and active lumbar spine ROM testing

PROCEDURES

• All pilots reported to the Warrior Human Performance Laboratory and performed two-hour laboratory testing to evaluate the trunk and hip musculoskeletal characteristics

TRUNK STRENGTH TESTING

- For trunk flexion/extension and rotation strength testing, pilots performed five maximal isokinetic concentric reciprocal contractions at the 60 degrees/second (Figure 1-2)
- Strength was measured as average peak torque normalized to body weight (%BW)

HIP STRENGTH TESTING

- For hip abduction strength testing, pilots performed three maximal isometric contractions for 5 seconds with 10 seconds rest between contractions

EXPERIMENTAL DESIGN AND METHODS

FIGURE 1: Trunk Flex/Ext Strength

FIGURE 2: Trunk Rot Strength

• Strength was measured as average peak torque normalized to body weight (%BW)

HIP RANGE-OF-MOTION TESTING

- analyses

LUMBAR SPINE RANGE-OF-MOTION TESTING

- forward into flexion (Figure 4)
- the chest and the hips at 90 degrees of flexion
- inclinometer values at T12 and L5
- analyses

FIGURE 3: Lumbar Ext ROM

STATISTICAL ANALYSIS

- between groups (p < 0.05)

For hip internal/external rotation passive ROM testing, an examiner rotated pilots' hip maximally while keeping the pelvis on the table • The average of three trials in degrees (°) were used for statistical

• For lumbar extension ROM testing, pilots were prone and actively pressed up into extension, keeping the hips on the table (Figure 3) • For lumbar flexion ROM testing, pilots were seated and "slumped"

• For lumbar lateral flexion ROM testing, pilots were standing and instructed to slide the fingers down as far as possible (Figure 5) • For lumbar rotation ROM testing, pilots were standing and instructed to rotate the trunk as far as possible while the arms on

• The lumbar ROM was calculated as the difference between the

• The average of three trials in degrees (°) were used for statistical

FIGURE 4: Lumbar Flex ROM FIGURE 5: Lumbar Latflex ROM

• Each variable was assessed for outliers and normality • Paired t-tests or Wilcoxon tests were used to compare all variables

- The LBP group demonstrated significantly less trunk extension strength (LBP: 345.5 ± 78.1%BW, non-LBP: 404.5 ± 66.0%BW, p = 0.004)
- The LBP group demonstrated significantly less trunk lateral flexion ROM towards right (LBP: $21.5 \pm 4.1^{\circ}$, non-LBP: $26.4 \pm 4.6^{\circ}$, p = 0.001) and left (LBP: $23.0 \pm 4.4^{\circ}$, non-LBP: $26.8 \pm 4.7^{\circ}$, p = 0.005)

Strength (%BW)	LBP	Non-LBP	p-value
Trunk Flexion	234.6 ± 46.8	242.4 ± 49.3	0.554
Trunk Extension	345.5 ± 78.1	404.5 ± 66.0	0.004*
R Trunk Rotation	138.6 ± 25.5	144.5 ± 29.6	0.460
L Trunk Rotation	134.8 ± 28.2	141.2 ± 28.2	0.431
R Hip Abduction	151.3 ± 30.5	153.0 ± 30.5	0.805
L Hip Abduction	157.9 ± 26.8	160.2 ± 29.1	0.740
Range-of-Motion (°)	LBP	Non-LBP	p-value
Lumbar Flexion	17.2 ± 7.2	20.1 ± 8.7	0.176
Lumbar Extension	47.7 ± 8.0	50.1 ± 7.3	0.203
R Lumbar Lateral Flexion	21.5 ± 4.1	26.4 ± 4.6	0.001*
L Lumbar Lateral Flexion	23.0 ± 4.4	26.8 ±4.7	0.005*
R Lumbar Rotation	9.4 ± 3.2	11.4 ± 3.9	0.061
L Lumbar Rotation	9.5 ± 2.9	10.8 ± 3.8	0.232
R Hip Internal Rotation	46.9 ± 9.0	46.9 ± 10.4	0.994
L Hip Internal Rotation	46.7 ± 9.2	45.8 ± 11.3	0.704
R Hip External Rotation	60.1 ± 7.7	60.6 ± 7.7	0.845
L Hip External Rotation	60.7 ± 7.9	61.3 ± 9.8	0.837

SUMMARY AND CONCLUSIONS

- The current investigation revealed musculoskeletal characteristics that are associated with pilots with a self-reported history of LBP
- Further research on other neuromuscular factors (e.g. trunk proprioception, posture, and balance) is warranted

This work was supported by the US Army Medical Research and Materiel Command (Research grant USAMRMC/TATRC #W81XWH-06-2-0070/W81XWH-09-2-0095/W81XWH-11-2-0097). Opinions, interpretations, conclusions, and recommendations are those of the author and not necessarily endorsed by the US Army.

RESULTS

